If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+13x-23=0
a = 10; b = 13; c = -23;
Δ = b2-4ac
Δ = 132-4·10·(-23)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-33}{2*10}=\frac{-46}{20} =-2+3/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+33}{2*10}=\frac{20}{20} =1 $
| 1.12=1.2g=8.62 | | A=4A(8x-2B) | | 3x+7=-5(4x-6) | | x^+8=57 | | x-21/4=1/18 | | 5-x=13/4 | | 2/3x=56 | | 3x^=63 | | (x+28)=(2x+16) | | 5-x=1.75 | | 4b+24=3b-6 | | x-7/10=5/6 | | x^=-100 | | 3.4–0.6x=2x–(0.4x+1) | | 7p-2-4p=19 | | x^=100 | | -18=16-3(6t+5) | | r=16=5 | | (x+42)+3x=90 | | 25n=-100 | | 5b+15=4b-16 | | 40+0,5x=5 | | 8(2x-4)+4x=10x+8 | | F(x)=9-7x | | 9=2(x-2)/2 | | 7/2=5x+3(x-2)+5 | | 5x^=125 | | 11x+50=180 | | -17x+15=-18 | | R=420x-2x^2 | | 10–u=9 | | 20+x=-6(x-1) |